Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams
نویسندگان
چکیده
This study proposes a novel artificial intelligence (AI) model to estimate the shear strength of reinforcedconcrete (RC) deep beams. The proposed evolutionary multivariate adaptive regression splines (EMARS) model is a hybrid of multivariate adaptive regression splines (MARS) and artificial bee colony (ABC). In EMARS, MARS addresses learning and curve fitting and ABC implements optimization to determine the optimal parameter settings with minimal estimation errors. The proposed model was constructed using 106 experimental datasets from the literature. EMARS performance was compared with three other data-mining techniques, including back-propagation neural network (BPNN), radial basis function neural network (RBFNN), and support vector machine (SVM). EMARS estimation accuracy was benchmarked against four prevalent mathematical methods, including ACI-318 (2011), CSA, CEB-FIP MC90, and Tang’s Method. Benchmark results identified EMARS as the best model and, thus, an efficient alternative approach to estimating RC deep beam shear strength. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...
متن کاملStepwise Regression for shear capacity assessment of steel fiber reinforced concrete beams
The addition of steel fibers into concrete improves the postcracking tensile strength of hardened concrete and hence significantly enhances the shear strength of reinforced concrete reinforced concrete beams. However, developing an accurate model for predicting the shear strength of steel fiber reinforced concrete (SFRC) beams is a challenging task as there are several parameters such as the co...
متن کاملESTIMATING DRYING SHRINKAGE OF CONCRETE USING A MULTIVARIATE ADAPTIVE REGRESSION SPLINES APPROACH
In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying...
متن کاملAn Experimental Study on Shear Strengthening of RC Lightweight Deep Beams Using CFRP
. This paper presents the results of an experimental investigation on shear strength enhancement of reinforced concrete deep beams externally reinforced with fiber reinforced polymer (FRP) composites. A total of six deep beam specimens of two different classes, as-built (unstrengthened) and retrofitted were tested in the experimental evaluation program. Two composite systems namely carbon/epoxy...
متن کاملAdaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
Article history: Received: 27 June 2015 Accepted: 25 August 2015 A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 28 شماره
صفحات -
تاریخ انتشار 2014